992 research outputs found

    A perfect storm? The impact of COVID-19 on community-based conservation in Namibia

    Get PDF
    We report on a rapid survey of five communal-area conservancies in Namibia to understand initial impacts on community-based conservation of national and international policies for dealing with the COVID-19 pandemic. Namibia’s Community-Based Natural Resources Management (CBNRM) programme has been growing for over 30 years, with high economic reliance on tourism and conservation hunting. We review the interrelationships between COVID-19, CBNRM, tourism and hunting, and discuss our findings under eight interlocking themes: 1) disruption to management and regular operational processes of conservancies, including 2) effects on conservancy wildlife patrolling and monitoring; 3) losses of revenue and cash flow in conservancy business operations; 4) impacts on Joint-Venture Partnerships; 5) impacts on employment opportunities and local livelihoods; 6) effects on community development projects and social benefits, including 7) disruption to funded projects and programmes; and 8) lack of technical capacity regarding communication technologies and equipment. In our conclusion we discuss tensions between an assumption that normal business can or will be resumed, and calls for the COVID-19 pandemic to create an opportunity for global choices away from ‘business-as-normal’. It is too early to tell what mix of these perspectives will unfold. What is clear is that communal-area conservancies must derive benefits from conservation activities in their areas that are commensurate with their role as key actors in the conservation of Namibia’s valuable wildlife and landscapes

    A Model of Habitability Within the Milky Way Galaxy

    Full text link
    We present a model of the Galactic Habitable Zone (GHZ), described in terms of the spatial and temporal dimensions of the Galaxy that may favour the development of complex life. The Milky Way galaxy is modelled using a computational approach by populating stars and their planetary systems on an individual basis using Monte-Carlo methods. We begin with well-established properties of the disk of the Milky Way, such as the stellar number density distribution, the initial mass function, the star formation history, and the metallicity gradient as a function of radial position and time. We vary some of these properties, creating four models to test the sensitivity of our assumptions. To assess habitability on the Galactic scale, we model supernova rates, planet formation, and the time required for complex life to evolve. Our study improves on other literature on the GHZ by populating stars on an individual basis and by modelling SNII and SNIa sterilizations by selecting their progenitors from within this preexisting stellar population. Furthermore, we consider habitability on tidally locked and non-tidally locked planets separately, and study habitability as a function of height above and below the Galactic midplane. In the model that most accurately reproduces the properties of the Galaxy, the results indicate that an individual SNIa is ~5.6 \times more lethal than an individual SNII on average. In addition, we predict that ~1.2% of all stars host a planet that may have been capable of supporting complex life at some point in the history of the Galaxy. Of those stars with a habitable planet, ~75% of planets are predicted to be in a tidally locked configuration with their host star. The majority of these planets that may support complex life are found towards the inner Galaxy, distributed within, and significantly above and below, the Galactic midplane.Comment: Accepted for publication in Astrobiology. 40 pages, 12 figures, 3 table

    Convolutamydine A and synthetic analogues have antinociceptive properties in mice

    Get PDF
    AbstractConvolutamydine A, an oxindole that originated from a marine bryozoan, has several biological effects. In this study, we aimed to investigate the antinociceptive effects of convolutamydine A and two new synthetic analogues.Convolutamydine A and the two analogues were given orally to assess their ability to induce antinociceptive effects. Formalin-induced licking response, acetic acid-induced contortions, and hot plate models were used to characterize the effects of convolutamydine A and its analogues.Convolutamydine A (4,6-bromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole), compound 1 (3-(2-oxopropyl)-3-hydroxy-2-oxindole), and compound 2 (5-bromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole) caused peripheral antinociceptive and anti-inflammatory effects in the acetic acid-induced contortions and the formalin-induced licking models. Supraspinal effects were also observed in the hot plate model and were similar to those obtained with morphine. The peripheral effects were not mediated by the cholinergic or opioid systems. The antinociceptive effects of convolutamydine A seem to be mediated by all three systems (cholinergic, opioid, and nitric oxide systems), and the mechanism of action of compounds 1 and 2 involved cholinergic and nitric oxide-mediated mechanisms. Convolutamydine A and its analogues (compounds 1 and 2) showed good antinociceptive ability after systemic administration in acute pain models. The antinociceptive action mediated by cholinergic, opioid, and nitric oxide systems could explain why convolutamydine A, compound 1, and compound 2 retained their antinociceptive effects. The doses used were similar to the doses of morphine and were much lower than that of acetylsalicylic acid, the classical analgesic and anti-inflammatory drug.In conclusion, convolutamydine A and the two analogues demonstrated antinociceptive effects comparable to morphine's effects

    Noncommutative quantum mechanics and Bohm's ontological interpretation

    Full text link
    We carry out an investigation into the possibility of developing a Bohmian interpretation based on the continuous motion of point particles for noncommutative quantum mechanics. The conditions for such an interpretation to be consistent are determined, and the implications of its adoption for noncommutativity are discussed. A Bohmian analysis of the noncommutative harmonic oscillator is carried out in detail. By studying the particle motion in the oscillator orbits, we show that small-scale physics can have influence at large scales, something similar to the IR-UV mixing

    Realistic Equations of State for the Primeval Universe

    Full text link
    Early universe equations of state including realistic interactions between constituents are built up. Under certain reasonable assumptions, these equations are able to generate an inflationary regime prior to the nucleosynthesis period. The resulting accelerated expansion is intense enough to solve the flatness and horizon problems. In the cases of curvature parameter \kappa equal to 0 or +1, the model is able to avoid the initial singularity and offers a natural explanation for why the universe is in expansion.Comment: 32 pages, 5 figures. Citations added in this version. Accepted EPJ
    • …
    corecore